Growth of Wind Waves with Fetch in the Sea of Japan under Winter Monsoon Investigated Using Data from Satellite Altimeters and Scatterometer
نویسنده
چکیده
By using wind vector fields observed by the NASA Scatterometer (NSCAT) and significant wave heights observed by the TOPEX/POSEIDON and European Remote Sensing Satellite-2 (ERS-2) altimeters, one-dimensional fetch growth of wind waves has been investigated under conditions of strong wind and high waves caused by the East Asian winter monsoon in the Sea of Japan. The evolution of fetch-limited wind waves can be observed by the altimeters along their ground tracks. The fetch is estimated by using vector wind fields observed by NSCAT. The derived growth characteristics of wind waves are compared with empirical relationships between the nondimensional fetch and significant wave height proposed by previous studies. Good agreement is discernible with Toba’s fetch graph formula normalized by the friction velocity, while Wilson’s well-known formula normalized by the wind speed at a height of 10 m tends to underestimate the wave height under such severe conditions of high wind and very long fetch. This discrepancy is explained by the wind-speed dependence of the drag coefficient. A simple correction to Wilson’s formula for the high wind conditions is proposed and compared with the observed data.
منابع مشابه
3D Modeling of Wind-Driven Circulation In The Northern Indian Ocean During Monsoon
Abstract The purpose of this research is to design and identify some of the natures and characteristics of high-resolution surface currents in the Northern Indian Ocean. The pattern of 3D circulation of the Wind-driven surface currents, Sea surface temperature (SST) and Sea Surface Salinity (SSS) distribution in the Northern Indian Ocean using The MIT general circulation model (MITgcm) with ho...
متن کاملSwell and sea in the emerging Arctic Ocean
Ocean surface waves (sea and swell) are generated by winds blowing over a distance (fetch) for a duration of time. In the Arctic Ocean, fetch varies seasonally from essentially zero in winter to hundreds of kilometers in recent summers. Using in situ observations of waves in the central Beaufort Sea, combined with a numerical wave model and satellite sea ice observations, we show that wave ener...
متن کاملInvestigation of Geostrophic and Ekman Surface Current Using Satellite Altimetry Observations and Surface Wind in Persian Gulf and Oman Sea
The rise of satellite altimetry is a revolution in the ocean sciences. Due to its global coverage and its high resolution, altimetry classically outperforms in situ water level measurement. Ekman and geostrophic currents are large parts of the ocean’s current, playing a vital role in global climate variations. According to the classic oceanography, Ekman and geostrophic currents can be calculat...
متن کاملSeasonal variability of the South Equatorial Countercurrent
[1] Using the 1.5-layer long Rossby wave model forced by the seasonal European Remote Sensing (ERS) satellite scatterometer wind, we demonstrate that the seasonal variability of the South Equatorial Countercurrent (SECC) is due to the interplay of two types of forced Rossby waves: the resonantly forced Rossby waves north of 10 S and the locally forced Rossby waves south of 10 S. The resonantly ...
متن کاملWave Hindcast Study of the Caspian Sea
The significant effect of waves on coastal and marine activities urges the precise identification of wave characteristics using field measurements, theoretical studies, physical modeling or numerical simulations. In order to study thoroughly the wave climate in the Caspian Sea, a wave modeling and hindcast project was performed by Iranian National Center for Oceanography. In this study, one of ...
متن کامل